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Note 

The Determination of Incomplete Gamma Functions 

Through Analytic Integration 

1. INTRODUCTION 

In a recent note [6] it was shown that accurate values of the exponential integral 

E,(x) = Iw e-2tt-n df (1) 

can be obtained in the case of E,(x) thru a recursive procedure in the argument which 
will be termed analytic integration. The occurrence of these functions in the reduction 
of multi-center integrals is well known [5]. 

In order to establish the algorithmic reliability of analytic integration for our 
functions we shall discuss a remarkable error cancellation phenomenon. We shall 
consider the more general class of incomplete gammafunctions defined by 

tp(s, x) = es lrn e-sfts-l dt (2) 

where Rc(x) > 0. When n is a positive integer then one has E,(X) = e-“9(--n + 1, x). 
One has the expansion 

ds, x - 4 = e--Y&% x) + hp(s + 1, X) -1. /A& + 2, 421 j- . . .). (3) 

The convergence of this series will be examined later. The relation q(s + 1, x) = 
(1 + spj(.s, x))/x allows one to introduce afhnc linear operators r,, T,, T3 ,... by 
setting T,(w) - (1 f (S + n - 1) w)/x. One thus has T,,T,,-l --- Tl(~(s, x)) == 
q(.s + n, x). 

We set y = x -/- h and define the operator series 

T 5,~ = ch (I+ hTl + ; TIT2 + -) (4) 

to obtain a transition operator with the property that T,,,(&s, x)) = @& y). It is 
thus appropriate to call T,., the analytic continuation operator relating q+, x) and 
dS> Y>- 
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Qualitative description of the mairz results 

(I) The series which defines the continuation operator converges if ( I’I/X j < 1, 
where h = x - y. 

(2) When all the variabIes are real then T,,, is error correcting when ail the 
variables are real and J’ < X. 

The continuation operator method has high precision for the entire range of real 
parameters s, whether negative or positive, and all positive arguments x. The method 
is especially attractive whenever there is need for multiple evaluations of r&, X) 
with fixed parameter s and variable argument X. 

In computer programs it was expedient to evalaute the modified series TX., = 
+(I + cS, t c”S,S, + ...) where c = (X - y)lx and S, = M;‘T&I’ln-I with 
Mu = ~.P/Fz!. Programs in ALGOL are available on request. 

2. ANALYSIS 0~ THE CoNTINu.4TroN OI'ERATOR 

Let 7 be a function on an open complex domain 8. When T(w) is not zero then 
the formula T(oJ(Z + c)) = T(w)(l + BE) defines a number 8 = B(,w) which is cahed 
the stability factor of T at CO. When T is a&se linear then & = wT’(w}[T(w) = 
(T(w(l + e)) - T(w)j/T(w) E. If / e(o)\ < 1 then T is said to be error cowec~ing 
at w and if \ 8(w)i > I then T is said to be error mangz]j+~g at w. 

If S and T are two differentiable functions such that T(w) and ST(w) are distinct 
from zero then one has the ch& rule OST(w) = Bs(Tw) &(w). 

EXAMPLE 2.1. We shall give a quantitative description of the instability which 
occurs in the recursive generation of incomplete gamme functions. Let T -= 
T,T,-, ... T, . One has T(y(s, x)) = q(s + I!, x) and thus our recursion proceeds 
in reverse to the direction considered in [6]. One has ~9,~,(oJ) = &(wj-l and thus our 
stability picture in comparison with that example is also reversed, 

Use of the chain rule leads to the formula 

BT(cp(S, x)) = p?(s, x) y(.s -k I-l, x)-l x-‘L s(s -t 1) e*- (s f I? - 1) (5) 

The continued fraction appearing in [4] allows oue to write sj(s, x) = l/(z + 
w(l - s)/(w + 1)). On the assumption that x is positive and s is real one has w > 0, 
When s < 1 one thus has the estimate (s + I)-’ < ~(s, X) < SC-I. 

One now deduces the easy estimate 

Take x = I. When the residual error in computer representation of numbers is 
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of relative magnitude lo-l1 then a choice of n = 15 will suffice to guarantee total 
uncertainty of all digits in the computed number T(cJJ(--n, x)). 

When a = Re(s) is positive then one has the estimate 1 CJZJ(S, x)1 < eU j x j-5 I’(a), 
where u = Re(.x). When a + n is positive one thus has the estimate 

where c z lz]x and h = x - J’. When 1 c 1 < 1 the operator series (4) thus converges 
at the point &, x). 

THEOREM 2.2. The operator series 

Tr,11 = e-h (I + hT, + g T,T, + . ..I. 

where h = x - y, converges at every poirzt when 1 h/x 1 C 1. 

Proof. It suffices to demonstrate that the operator series converges at ~(1 + C) 
where w is a point where the series is known to converge. Let H, = T,T,,+ a.* T, . 
We shall now consider 

S = h*H,&z! + h”+“H,+J(n + I)! + **. + h”+““Hn+,,J(n + nz)!. 

In the estimate [ S(w(1 + E))[ d j S(w)] + [ S(w(l + E)) - S(w)1 the quantity 5’(w) 
is a portion of a convergent series. Moreover, one has that 

S(w(l + E)) - S(w) = *r (-c)” (-J, 
Zd=?3 

where c = 1zjx. This sum is a portion of the expansion of (1 - c)-“. It follows that 
our operator series converges at every point. 

THEOREM 2.3. If 1 h/x j < 1 then the stability factor of the continuation operator 
T,., at w = pj(s, x) is given by 

e(x, Y> = e-hy(s,.4 y-45 Wt Y/X>-” 

where h = x - y. 

Proof. Let S = T,,, . One obtains from (8) that 

S(w(1 + E)) - S(w) = e--h (1 - (y”) c + (J”) c2 f a**) we = e-h(y/X)-S WE. (10) 
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3. EXTENSION OF THE CONTINUATION OPERATORS 

We shall extend the operator T,,, to arbitrary positive real values x and y and we 
shall evade some technicalities found in the complex case. 

DEFIWTIOX 3.1. If T,,, and T,,, satisfy 1(x - z)/x j < 1 and /(z - y>/z ! < 1 
then one can set Tz,ll = T,,,T,,, provided T,,, is independent of z. PLn operator 
T,,, defined thus thru an arbitrary finite composition with the original operators 
will be called an extended continuation operator with arguments x and y. 

THEOREM 3.2. The extended continuation operator T,,, with posititle real arguments 
is irzdependeent of the decomposition used to define it. These operator3 satisfi7 the trnnsi-~ 
tiz?ity relations 

At p?(s, x) the operator T,,, has the stability factor 

Proof. Let S = SnSn-l -*. S, and T = T,T,-, ..= T, denote two decompositions 
corresponding to the interval determined by x and y in terms of the original operators 
so that S(gj(s, x)) = T(&, x)) = q~(s, y). 

The chain rule, formula (9), and collapsing multiplication yield that 6(x, 4:) = 
@&, X) cp(s, y)-I( y/x)+ is the stability factor for both S artd T at o = “(3, x), 
One has 

s(w(l + .E))) = S(w)(l + 6(x, y) E) = T&)(1 i- 0(x, I;) E) = T(w(I f 4). (1.3) 

Thru variation of E one obtains that S -= Tat every point. The general transitivit! 
property is also immediate. 

Remarks on the case of complex arguments. The uniqueness in the above theorem 
depends on the uniqueness of the value &, X) for real positive X. Tn the complex case 
the extended operators T,,, will depend on the paths chosen on a Riemann surface. 
Moreover, the transitivity property will not hold in general. 

COROLLARY 3.3. If s is a real parameter and 0 < y < x then the ~o~ti~~~~t~o~ 
operator T,,, is error correcting. 

Proof. One evaluates to find that 

6(x, y) = e-$(s, x) q(s, y)-.l(~~/x)-s 

c 10 

zz 

J x 
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4. THE REMARKABLE ERROR CANCELLATION PHENOMENON 

W have already demonstrated that most terms in the computed series e-“(w + 
U,(w) + h2T27’,(~)/2! + em.) can loose all numerical significance due to recursion 
error. What is remarkable is that the sum of such terms can be correct. This pheno- 
menon is in part explained thru a calculation. For H, = IPT,T,-, em* T,/Iz! one has. 
KL(41 t e>> - f&(w) = (-w-3 WE. When s < 0 these terms may be large; 
however, their sum (1 - c)-” WE is small. 

Introduction of error into the series at a later stage leads to a generalization of 
our stability formula 

R = e-h(/znzI/17z ! + h”2+1Tnlfl /(m + I)! + h’“+“T,,,T,,,/(m + 2)! -I a**) (15) 

S = e-“(I -+ hT, + ... + hm-lT,I-lT,-z .*. T&m - l)!) (16) 

allows us to define U(a) = S(w) -I- R(a). When o = q(s, X) and a = ~(s f nz, .x). 
then U(R) = I&S, ~7) and one has the fomula 

k9,(a) = e-$(s + m, x) y(s, y)-’ F(s + m, 1, nz t I, c) h”/nz! (17) 

where F(s + , 1, m t 1, c) = 1 + c(s t nz)/(n? t 1) + c*(s + 112)(s + m t I)/ 
(nz + l)(m + 2) + .*. is a Gauss hypergoemetric series. Tn the absence of a generali- 
zation of (14) it is nevertheless possible to check that e,(a) is small (when &, u) 
is computed from q(s, r) with 0 < y < x) by making an actual evaluation of 0,(a). 

5. NUMERICAL EXAMPLES 

Let truncated versions of (3) and (4) be denoted by 

s, = e-"(qd), x) t hq~(s -1 1, x) t *a* t hn&s + n, x)/n!) (18) 

I’,~ = e-"(I+ hT, + *a* + II”T,~T,-, *a. T,/Iz!)(~(s, x)). (19) 

Examination of the stability formulas (12) and (17) shows that one can expect to 
produce numerical evidence of error cancellation only when s is negative and x is 
small. The table below came from a computer experiment where the arithmetic was 
accurate to eleven decimal digits. 
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TABLE I 

1 1.4105328406 1.4105328407 3.2(--11) 

6 1.7834376109 1.7834372653 --1.9(-7) x = 1,12 

11 1.7834219945 1.7834398441 l.O(-5) J’ = 1,‘16 
16 1.7834674305 1.7834398441 -1.6(-j) s = -31.5 

21 1.7S34381685 1.7834398441 9.4(-7) 

26 1.7834398464 1.7834398441 -1.3(-9) 

31 3.7834398441 1.7834398441 2.6(--11) 

1 1.3098199998 1.3098199998 0 

4 8.2957465419 8.2957465418 -1.4(-11) 

11 1.6593509080 1.6593509080 -7.0(-n) x = 20 

16 1.7377817091 1.7377817092 -6.?(--12) y = 20 . 23 

21 1.7390482448 1.7390682448 --6.7(-12) &- z -3i.j 

26 1.7390738449 1.7390838448 -6.7(-12) 

31 1.7390738533 1.7390738533 -4.7(--12) 

TABLE II 

w = q(s, x) = 1.7937683115(-l) s = -2 

T,,,(w) = x = 4.7689685759(-l) 6(x, y) == 10-g .‘c = 3 

T,&) = (u = 1.793768=(- 1) 60, x) == IO” > J’ = 3(3,4)1* 
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